XMM - Probabilistic Models for Motion Recognition and Mapping

Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123]
 Cxmm::AttributeBaseBase Class for Generic Attributes
 Cxmm::Attribute< bool >
 Cxmm::Attribute< CovarianceMode >
 Cxmm::Attribute< double >
 Cxmm::Attribute< float >
 Cxmm::Attribute< std::string >
 Cxmm::Attribute< unsigned int >
 Cxmm::Attribute< xmm::GaussianDistribution::CovarianceMode >
 Cxmm::Attribute< xmm::HMM::RegressionEstimator >
 Cxmm::Attribute< xmm::HMM::TransitionMode >
 Cxmm::Attribute< T >Generic Attribute
 Cxmm::Attribute< std::vector< std::string > >Generic Attribute (Vector Specialization)
 Cxmm::Attribute< std::vector< T > >Generic Attribute (Vector Specialization)
 Cxmm::CircularBuffer< T, channels >Simple CircularBuffer Class
 Cxmm::CircularBuffer< double >
 Cxmm::ClassParameters< HMM >Parameters specific to each class of a Hidden Markov Model
 Cxmm::Configuration< HMM >
 Cxmm::ClassResults< ModelType >Class-specific Results of the filtering/inference process
 Cxmm::ClassResults< HMM >Results of Hidden Markov Models for a single class
 Cxmm::ClassResults< xmm::GMM >
 Cxmm::ClassResults< xmm::HMM >
 Cxmm::EllipseStructure for storing Ellipse parameters
 Cxmm::EventGenerator< EventType >Generator class for a specific type of events
 Cxmm::EventGenerator< xmm::PhraseEvent >
 Cxmm::EventGenerator< xmm::TrainingEvent >
 Cexception
 Cxmm::JsonExceptionException class for handling JSON parsing errors
 Cxmm::HMM
 Cxmm::Matrix< T >Dirty and very incomplete Matrix Class
 Cxmm::PhraseEventEvent that can be thrown by a phrase to a training set
 Cxmm::Results< ModelType >Results of the filtering/inference process (for a Model with multiple classes)
 Cxmm::Results< KMeans >Results of the clustering process
 Cxmm::Results< xmm::GMM >
 Cxmm::Results< xmm::HMM >
 Cxmm::Results< xmm::KMeans >
 Cxmm::TrainingEventEvent for monitoring the training process
 Cxmm::WritableAbstract class for handling JSON + File I/O
 Cxmm::ClassParameters< xmm::GMM >
 Cxmm::ClassParameters< xmm::HMM >
 Cxmm::ClassParameters< xmm::KMeans >
 Cxmm::Configuration< xmm::KMeans >
 Cxmm::Model< SingleClassGMM, GMM >
 Cxmm::GMMGaussian Mixture Model for Continuous Recognition and Regression (Multi-class)
 Cxmm::Model< SingleClassHMM, HMM >
 Cxmm::HierarchicalHMMHierarchical Hidden Markov Model for Continuous Recognition and Regression (Multi-class)
 Cxmm::ClassParameters< ModelType >Class-specific Model Parameters
 Cxmm::Configuration< ModelType >Model configuration
 Cxmm::ClassParameters< GMM >Parameters specific to each class of a Gaussian Mixture Model
 Cxmm::Configuration< GMM >
 Cxmm::ClassParameters< KMeans >Parameters specific to each class of a K-Means Algorithm
 Cxmm::GaussianDistributionMultivariate Gaussian Distribution
 Cxmm::KMeansK-Means Clustering algorithm
 Cxmm::Model< SingleClassModel, ModelType >Probabilistic machine learning model for multiclass recognition and regression
 Cxmm::PhraseData phrase
 Cxmm::SharedParametersShared Parameters for models with multiple classes
 Cxmm::SingleClassProbabilisticModelGeneric Template for Machine Learning Probabilistic models based on the EM algorithm
 Cxmm::SingleClassGMMSingle-Class Gaussian Mixture Model
 Cxmm::SingleClassHMMSingle-Class Hidden Markov Model
 Cxmm::TrainingSetBase class for the definition of training sets