XMM - Probabilistic Models for Motion Recognition and Mapping

Public Member Functions | Public Attributes | Protected Member Functions | List of all members
xmm::ClassParameters< HMM > Class Template Reference

Parameters specific to each class of a Hidden Markov Model. More...

#include <xmmHmmParameters.hpp>

Inheritance diagram for xmm::ClassParameters< HMM >:
[legend]
Collaboration diagram for xmm::ClassParameters< HMM >:
[legend]

Public Member Functions

 ClassParameters ()
 Default Constructor. More...
 
 ClassParameters (ClassParameters const &src)
 Copy Constructor. More...
 
 ClassParameters (Json::Value const &root)
 Constructor from Json Structure. More...
 
ClassParametersoperator= (ClassParameters const &src)
 Assignment. More...
 
Json I/O
Json::Value toJson () const
 Write the object to a JSON Structure. More...
 
virtual void fromJson (Json::Value const &root)
 Read the object from a JSON Structure. More...
 

Public Attributes

bool changed = false
 specifies if parameters have changed (model is invalid) More...
 
Attribute< unsigned int > states
 Number of hidden states. More...
 
Attribute< unsigned int > gaussians
 Number of Gaussian Mixture Components. More...
 
Attribute< double > relative_regularization
 Offset Added to the diagonal of covariance matrices for convergence (Relative to Data Variance) More...
 
Attribute< double > absolute_regularization
 Offset Added to the diagonal of covariance matrices for convergence (minimum value) More...
 
Attribute< GaussianDistribution::CovarianceModecovariance_mode
 Covariance Mode. More...
 
Attribute< HMM::TransitionModetransition_mode
 Transition matrix of the model (left-right vs ergodic) More...
 
Attribute< HMM::RegressionEstimatorregression_estimator
 Type of regression estimator. More...
 
Attribute< bool > hierarchical
 specifies if the decoding algorithm is hierarchical or class-conditional More...
 

Protected Member Functions

virtual void onAttributeChange (AttributeBase *attr_pointer)
 notification function called when a member attribute is changed More...
 

Detailed Description

template<>
class xmm::ClassParameters< HMM >

Parameters specific to each class of a Hidden Markov Model.

Constructor & Destructor Documentation

Default Constructor.

Copy Constructor.

Parameters
srcSource Object
xmm::ClassParameters< HMM >::ClassParameters ( Json::Value const &  root)
explicit

Constructor from Json Structure.

Parameters
rootJson Value

Member Function Documentation

virtual void xmm::ClassParameters< HMM >::fromJson ( Json::Value const &  root)
virtual

Read the object from a JSON Structure.

Parameters
rootJSON value containing the object's information
Exceptions
JsonExceptionif the JSON value has a wrong format

Reimplemented in xmm::Configuration< HMM >.

virtual void xmm::ClassParameters< HMM >::onAttributeChange ( AttributeBase attr_pointer)
protectedvirtual

notification function called when a member attribute is changed

ClassParameters& xmm::ClassParameters< HMM >::operator= ( ClassParameters< HMM > const &  src)

Assignment.

Parameters
srcSource Object
Json::Value xmm::ClassParameters< HMM >::toJson ( ) const

Write the object to a JSON Structure.

Returns
Json value containing the object's information

Member Data Documentation

Attribute<double> xmm::ClassParameters< HMM >::absolute_regularization

Offset Added to the diagonal of covariance matrices for convergence (minimum value)

bool xmm::ClassParameters< HMM >::changed = false

specifies if parameters have changed (model is invalid)

Covariance Mode.

Attribute<unsigned int> xmm::ClassParameters< HMM >::gaussians

Number of Gaussian Mixture Components.

Attribute<bool> xmm::ClassParameters< HMM >::hierarchical

specifies if the decoding algorithm is hierarchical or class-conditional

Type of regression estimator.

Attribute<double> xmm::ClassParameters< HMM >::relative_regularization

Offset Added to the diagonal of covariance matrices for convergence (Relative to Data Variance)

Attribute<unsigned int> xmm::ClassParameters< HMM >::states

Number of hidden states.

Transition matrix of the model (left-right vs ergodic)


The documentation for this class was generated from the following file: