XMM - Probabilistic Models for Motion Recognition and Mapping

xmm::SingleClassGMM Member List

This is the complete list of members for xmm::SingleClassGMM, including all inherited members.

__str__() const xmm::Writableinline
addCovarianceOffset()xmm::SingleClassGMMprotected
allocate()xmm::SingleClassGMMprotectedvirtual
betaxmm::SingleClassGMM
cancel_training_xmm::SingleClassProbabilisticModelprotected
cancelTraining()xmm::SingleClassProbabilisticModel
cancelTrainingIfRequested()xmm::SingleClassProbabilisticModelprotected
check_training() const xmm::SingleClassProbabilisticModelinlineprotected
componentsxmm::SingleClassGMM
current_regularizationxmm::SingleClassGMMprotected
emAlgorithmHasConverged(int step, double log_prob, double old_log_prob) const xmm::SingleClassProbabilisticModelprotected
emAlgorithmInit(TrainingSet *trainingSet)xmm::SingleClassGMMprotectedvirtual
emAlgorithmTerminate()xmm::SingleClassProbabilisticModelprotectedvirtual
emAlgorithmUpdate(TrainingSet *trainingSet)xmm::SingleClassGMMprotectedvirtual
filter(std::vector< float > const &observation)xmm::SingleClassGMMvirtual
fromJson(Json::Value const &root)xmm::SingleClassGMMvirtual
HierarchicalHMM classxmm::SingleClassGMMfriend
initCovariances_fullyObserved(TrainingSet *trainingSet)xmm::SingleClassGMMprotected
initMeansWithKMeans(TrainingSet *trainingSet)xmm::SingleClassGMMprotected
initParametersToDefault(std::vector< float > const &dataStddev)xmm::SingleClassGMMprotected
is_training_xmm::SingleClassProbabilisticModelprotected
isTraining() const xmm::SingleClassProbabilisticModel
labelxmm::SingleClassProbabilisticModel
likelihood(std::vector< float > const &observation, std::vector< float > const &observation_output=null_vector_float)xmm::SingleClassGMMprotected
likelihood_buffer_xmm::SingleClassProbabilisticModelprotected
mixture_coeffsxmm::SingleClassGMM
Model classxmm::SingleClassGMMfriend
normalizeMixtureCoeffs()xmm::SingleClassGMMprotected
obsProb(const float *observation, int mixtureComponent=-1) const xmm::SingleClassGMMprotected
obsProb_bimodal(const float *observation_input, const float *observation_output, int mixtureComponent=-1) const xmm::SingleClassGMMprotected
obsProb_input(const float *observation_input, int mixtureComponent=-1) const xmm::SingleClassGMMprotected
operator=(SingleClassGMM const &src)xmm::SingleClassGMM
xmm::SingleClassProbabilisticModel::operator=(SingleClassProbabilisticModel const &src)xmm::SingleClassProbabilisticModel
parametersxmm::SingleClassGMM
readFile(char *fileName)xmm::Writableinline
regression(std::vector< float > const &observation_input)xmm::SingleClassGMMprotected
reset()xmm::SingleClassGMMvirtual
resultsxmm::SingleClassGMM
shared_parametersxmm::SingleClassProbabilisticModel
SingleClassGMM(std::shared_ptr< SharedParameters > p=NULL)xmm::SingleClassGMM
SingleClassGMM(SingleClassGMM const &src)xmm::SingleClassGMM
SingleClassGMM(std::shared_ptr< SharedParameters > p, Json::Value const &root)xmm::SingleClassGMMexplicit
SingleClassHMM classxmm::SingleClassGMMfriend
SingleClassProbabilisticModel(std::shared_ptr< SharedParameters > p=NULL)xmm::SingleClassProbabilisticModel
SingleClassProbabilisticModel(SingleClassProbabilisticModel const &src)xmm::SingleClassProbabilisticModel
SingleClassProbabilisticModel(std::shared_ptr< SharedParameters > p, Json::Value const &root)xmm::SingleClassProbabilisticModelexplicit
toJson() const xmm::SingleClassGMMvirtual
train(TrainingSet *trainingSet)xmm::SingleClassProbabilisticModel
training_eventsxmm::SingleClassProbabilisticModel
training_mutex_xmm::SingleClassProbabilisticModelprotected
training_statusxmm::SingleClassProbabilisticModel
updateInverseCovariances()xmm::SingleClassGMMprotected
updateResults()xmm::SingleClassGMMprotected
writeFile(char *fileName) const xmm::Writableinline
~SingleClassProbabilisticModel()xmm::SingleClassProbabilisticModelvirtual
~Writable()xmm::Writableinlinevirtual